Hadrons and Holography

Josh Erlich College of William & Mary

MENU 2010, Williamsburg VA

What is Holographic QCD?

 Holographic QCD is an attempt to model hadronic physics as a theory of fields or strings in extra dimension(s).

What is Holographic QCD?

- Holographic QCD is an attempt to model hadronic physics as a theory of fields or strings in extra dimension(s).
- Simple models of this type capture qualitative, and sometimes quantitative, features of QCD at low energies.

Holographic QCD

Towers of bound states identified by quantum numbers, mass Towers of Kaluza-Klein modes identified by quantum numbers, mass

Holographic QCD

Towers of bound states identified by quantum numbers, mass

Hidden local symmetry: Vector mesons act like massive gauge bosons (Sakurai; Bando et al.) Towers of Kaluza-Klein modes identified by quantum numbers, mass

Vector mesons modeled by Kaluza-Klein modes of gauge fields (Polchinski,Strassler;Son,Stephanov; Brodsky,De Teramond; etc.)

QCD

Holographic QCD

Towers of bound states identified	Towers of Kaluza-Klein modes
by quantum numbers, mass	identified by quantum numbers, mass
Hidden local symmetry:	Vector mesons modeled by Kaluza-
Vector mesons act like massive	Klein modes of gauge fields
gauge bosons	(Polchinski,Strassler;Son,Stephanov;
(Sakurai; Bando et al.)	Brodsky,De Teramond; etc.)
Chiral symmetry breaking has implications at low energies	Chiral symmetry breaking has implications at low energies

QCD

Holographic QCD

Towers of bound states identified	Towers of Kaluza-Klein modes
by quantum numbers, mass	identified by quantum numbers, mass
Hidden local symmetry:	Vector mesons modeled by Kaluza-
Vector mesons act like massive	Klein modes of gauge fields
gauge bosons	(Polchinski,Strassler;Son,Stephanov;
(Sakurai; Bando et al.)	Brodsky,De Teramond; etc.)
Chiral symmetry breaking has	Chiral symmetry breaking has
implications at low energies	implications at low energies
Weinberg sum rules	Weinberg sum rules

Holographic QCD

QCD

Holographic QCD

QCD

Top-Down AdS/QCD

- String theory brane configuration → gauge theory similar to QCD (*e.g.* Kruczenski *et al.*; Antonyan, Harvey, Kutasov; Sakai, Sugimoto)
- At large-N, theory has weakly-coupled dual description via the AdS/CFT correspondence (Maldacena)

The Sakai-Sugimoto Model

Bottom-Up AdS/QCD

- Model tower of resonances as Kaluza-Klein modes in an extra dimension (Son, Stephanov'04)
- Model pattern of chiral symmetry breaking by analogy with AdS/CFT correspondence
- Optional: Specify details of model (geometry of extra dimension, couplings) by matching to UV as best possible
 (e.g. Brodsky, De Teramond; JE et al.; Da Rold, Pomarol)

Top-Down AdS/QCD:

- Advantage: Both descriptions of theory are relatively well understood, duality is exact.
- Disadvantage: QCD with fundamental flavors does not have weakly-coupled AdS/CFT dual, so far even at large-N.

Bottom-Up AdS/QCD:

- Advantage: Freedom to match model to aspects of QCD.
- Disadvantage: Some features of model disagree with QCD (analogous to large-N limit).

Step 1: Choose 5D gauge group and geometry.

• Tower of vector mesons are identified with tower of Kaluza-Klein gauge bosons.

SU(2) isospin \rightarrow 5D SU(2) gauge theory Conformal in the UV \rightarrow Anti-de Sitter space near its boundary

Step 1: Choose 5D gauge group and geometry.

 Tower of vector mesons are identified with tower of Kaluza-Klein gauge bosons.

SU(2) isospin \rightarrow 5D SU(2) gauge theory Conformal in the UV \rightarrow Anti-de Sitter space near its boundary

Can choose geometry by matching spectrum to Pade approx of SU(2) current-current correlator in deep Euclidean regime $-q^2 \gg m_{\rho}^2$.

Result: geometry = slice of AdS space (Shifman; JE,Kribs,Low; Falkowski,Perez-Victoria).

Evidence for Conformality

Brodsky and collaborators motivate Anti-de Sitter space from approximate conformality of QCD at low energies. e.g. Brodsky and Shrock '08

From CLAS (Deur et al.) '08

To include the full chiral symmetry, not just the vector subgroup,

 $SU(2) \times SU(2)$ chiral symmetry $\rightarrow SU(2) \times SU(2)$ 5D gauge group

Additional tower of gauge bosons \rightarrow tower of axial-vector mesons. (5D parity \rightarrow 4D parity)

(Also describes pions after symmetry breaking)

Step 2: Include pattern of chiral symmetry breaking

Hint from AdS/CFT: 4D operator \rightarrow 5D field $\overline{q}_i q_j \rightarrow$ Scalar fields X_{ij} , bifundamental under SU(2)×SU(2)

Background profile for X_{ij} : Non-normalizable mode \rightarrow source $\mathcal{L}_{4D} \supset m_{ij} \overline{q}_i q_j$ Normalizable mode $\rightarrow \text{VEV} \langle \overline{q}_i q_j \rangle$

The scalar field background explicitly and spontaneously breaks the chiral symmetry.

For definiteness, we need to choose 5D mass of scalar field.

AdS/CFT: $\left(m_X^2 = \Delta_{\overline{q}q} (\Delta_{\overline{q}q} - 4) \right)$ in units of AdS curvature.

In the UV, $\Delta_{\overline{q}q} = 3$, so we choose $\left(m_X^2 = -3\right)$.

Note: This choice is made for definiteness, but is not necessary.

In summary, the model is:

 $SU(2) \times SU(2)$ gauge theory in slice of AdS₅ with background bifundamental scalar field.

$$S = \int d^5 x \sqrt{-g} \left(-\frac{1}{2g_5^2} \operatorname{Tr} \left(L_{MN} L^{MN} + R_{MN} R^{MN} \right) + \operatorname{Tr} \left(|D_M X|^2 - 3|X|^2 \right) \right)$$
$$ds^2 = \frac{1}{z^2} \left(dx_\mu dx^\mu - dz^2 \right), \quad \epsilon < z < z_{IR}$$
$$X_0(x, z) = \frac{m_q}{2} z + \frac{\langle \overline{q}q \rangle}{2} z^3$$

Model parameters: $(g_5, m_q, \langle \overline{q}q \rangle, z_{IR})$

(JE,Katz,Son,Stephanov; DaRold,Pomarol)

AdS/QCD reproduces consequences of chiral symmetry, *e.g.* Gell-Mann,Oakes,Renner relation

$$m_{\pi}^2 f_{\pi}^2 = 2m_q \langle \overline{q}q \rangle$$

Matching to UV

In the deep Euclidean regime $-q^2 \gg m_{\rho}^2$, perturbative QCD gives

$$i\int d^4x \, e^{iq\cdot x} \langle J^a_\mu(x) J^b_
u(0)
angle = \left(q_\mu q_
u - g_{\mu
u} q^2
ight) \delta^{ab} \, rac{N}{24\pi^2} \, \log(q^2)$$

We can express the correlator as a sum over resonances:

$$i\int d^4x \, e^{iq\cdot x} \langle J^a_\mu(x) J^b_\nu(0) \rangle = \sum \frac{F_n^2}{q^2 - m_n^2} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{m_n^2} \right) \delta^{ab}$$

Agreement of these expressions in the deep Euclidean regime is a Weinberg sum rule.

 $m_n = n^{th}$ Kaluza-Klein mass $F_n =$ Decay constant of n^{th} resonance

Matching to UV

Matching 5D calculation w/ 4D perturbative calculation in UV \rightarrow $g_5^2 = 12\pi^2/N$. *Note:* this choice is made for definiteness, but is not necessary.

Summary so far: We have constructed a three-parameter model of the ρ , a_1 and π

Soft-Wall AdS/QCD

In the Hard Wall model $m_n^2 \sim n^2$

To obtain a linear Regge trajectory, the geometry can be modified while coupling to a dilaton background. (Karch,Katz,Son,Stephanov '06)

$$S=\int d^5x\sqrt{g}e^{-\Phi(x,z)}\, {\cal L}$$
 $\Phi_0(z)\sim z^2, \quad g_{MN}={
m AdS}_5 \;{
m Metric}$

Low-energy predictions are similar to hard-wall model

Hard-Wall (5D tree level)

With $z_{IR} = 1/(346 \text{ MeV})$, $\langle \overline{q}q \rangle = (308 \text{ MeV})^3$, $m_q = 2.3 \text{ MeV}$

		-Central	Values
Observable	Measured	Model	
	(MeV)	(MeV)	
m_{π}	139.6	141	
$m_{ ho}$	775.8	832	
m_{a_1}	1230	1220	
f_{π}	92.4	84.0	
$F_{ ho}^{1/2}$	345	353	
$F_{a_1}^{1/2}$	433	440	
$g_{ ho\pi\pi}$	6.03	5.29	
m_{f_2}	1275	1236	

From JE et al. '05, Katz et al. '05

Hard-Wall (5D tree level) With strange quark mass parameter

Observable	Measured	Model
	(MeV)	(MeV)
m _{K*}	892	897
m_{ϕ}	1020	994
m_{K_1}	1272	1290
m _K	498	411
f _K	113	117
m_{ω_3}	1667	1656
m_{f_4}	2025	2058
m_{η}	548	520
m'_n	958	867

from E. Katz, Lattice 2008

Hard-Wall (5D tree level) With strange quark mass parameter

Observable	Model A	Model B	Measured
	$(\sigma_s = \sigma_q)$	$(\sigma_s \neq \sigma_q)$	
	(MeV)	(MeV)	(MeV)
m_{π}	(fit)	134.3	139.6
f_{π}	(fit)	86.6	92.4
m_K	(fit)	513.8	495.7
f_K	104	101	113 ± 1.4
$m_{K_0^*}$	791	697	672
$f_{K_0^*}$	28.	36	
$m_{ ho}$	(fit)	788.8	775.5
$F_{ ho}^{1/2}$	329	335	345 ± 8
m_{K^*}	791	821	893.8
$F_{K^*}^{1/2}$	329	337	
m_{a_1}	1366	1267	1230 ± 40
$F_{a_1}^{1/2}$	489	453	433 ± 13
m_{K_1}	1458	1402	1272 ± 7
$F_{K_1}^{1/2}$	511	488	

From Abdidin and Carlson '09

Hard/Soft-Wall (5D tree level)

Pion Form Factor

from Kwee and Lebed, arXiv:0807.4565 Solid black and blue curves: Hard wall model Dotted red and green curves: Soft wall model

See also Grigoryan, Radyushkin '08

Hard/Soft-Wall (5D tree level)

Gravitational Form Factors and Generalized Parton Distributions

From Abidin and Carlson, arXiv:0801.3839

Top: p^+ and charge densities of Helicity-0 rho mesons in hard and soft wall models

Bottom: Same for Helicity-1 rho mesons

Hard-Wall (5D tree level)

Can determine meson radii from behavior of form factors near $q^2 = 0$.

Hard wall model:

 $\langle r_{\pi}^2 \rangle_{charge} = 0.33 \text{ fm}^2$ $\langle r_{\pi}^2 \rangle_{grav} = 0.13 \text{ fm}^2$

$$\langle r_{
ho}^2
angle_{charge} = 0.53 ~{
m fm}^2$$

 $\langle r_{
ho}^2
angle_{grav} = 0.21 ~{
m fm}^2$

$$\langle r_{a_1}^2 \rangle_{charge} = 0.39 \text{ fm}^2$$

 $\langle r_{a_1}^2 \rangle_{grav} = 0.15 \text{ fm}^2$

H. Grigoryan and A. Radyushkin; Z. Abidin and C. Carlson '07,'08

Universality in AdS/QCD?

Some observables are truly universal, *i.e.* independent of details of model.

Famous Example: Viscosity to Entropy Density η/s

Finite temperature \rightarrow spacetime horizon

Prediction, independent of details of spacetime geometry:

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Kovtun, Son and Starinets '04

Another example: Electrical Conductivity to Charge Susceptibility σ/χ

$$\frac{\sigma}{\chi} = \frac{1}{4\pi T} \frac{d}{d-2}$$

Kovtun and Ritz '08

Universality? Observables are roughly independent of X mass

Other Observations

- Close relationship between meson wavefunctions in extra dimension and light-front wavefunctions (Brodsky and De Teramond)
- Baryons appear as solitons in extra dimension similar to Skyrmions (Sakai and Sugimoto; Nawa *et al.*; Pomarol and Wulzer)
- AdS/QCD may address qualitative questions like chiral symmetry restoration (D.K. Hong *et al.*; Shifman and Vainshtein; Klempt)
- Can improve matching to UV by adding higher dimension 5D operators to action → power corrections in Operator Product Expansion (Hirn and Sanz)

AdS/CFT models have also been used to study the phase structure of QCD; cold atoms and superconductivity (Son; Balsubramanian et al.; Hartnoll et al.); technicolor (Hirn, Sanz; Carone et al.; Hong et al.)

Summary

- Holographic QCD models combine features of other models of QCD at low energies
- 5D tree-level calculations in holographic QCD models agree with hadronic observables at the 10-20% level, sometimes better
- 5D loop corrections and higher-dimension 5D operators have not been included -- AdS/QCD is an uncontrolled approximation above the QCD scale, so its success is a bit surprising.